An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems

نویسندگان

  • Jie Xu
  • Barry L. Nelson
  • L. Jeff Hong
چکیده

W propose an adaptive hyperbox algorithm (AHA), which is an instance of a locally convergent, random search algorithm for solving discrete optimization via simulation problems. Compared to the COMPASS algorithm, AHA is more efficient in high-dimensional problems. By analyzing models of the behavior of COMPASS and AHA, we show why COMPASS slows down significantly as dimension increases, whereas AHA is less affected. Both AHA and COMPASS can be used as the local search algorithm within the Industrial Strength COMPASS framework, which consists of a global search phase, a local search phase, and a final cleanup phase. We compare the performance of AHA to COMPASS within the framework of Industrial Strength COMPASS and as stand-alone algorithms. Numerical experiments demonstrate that AHA scales up well in high-dimensional problems and has similar performance to COMPASS in low-dimensional problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Supplement to “An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems”

Jie Xu Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA 22030, USA, [email protected] Barry L. Nelson Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208-3119, USA, [email protected] L. Jeff Hong Department of Industrial Engineering and Logistics Management, The Hong Kong Universi...

متن کامل

Hybrid Probabilistic Search Methods for Simulation Optimization

Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...

متن کامل

Speeding up COMPASS for high-dimensional discrete optimization via simulation

The convergent optimization via most promising area stochastic search (COMPASS) algorithm is a locally convergent randomsearch algorithm for solving discrete optimization via simulation problems. COMPASS has drawn a significant amount of attention since its introduction. While the asymptotic convergence of COMPASS does not depend on the problem dimension, the finite-time performance of the algo...

متن کامل

STRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM

The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...

متن کامل

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2013